SHIBATAFENDERTEAM GROUP

EUROPE | AMERICAS | ASIA

FENDER SYSTEM DESIGN – HOLISTIC APPROACH

Port and Terminal 2019 – Savannah, GA – USA Technical Presentation by Dominique Polte

SHIBATAFENDERTEAM

TABLE OF CONTENTS.

PART 1: COMPANY PRESENTATION

ShibataFenderTeam Group

Selected References

PART 2: TECHNICAL SESSION

SHIBATAFENDERTEAM GROUP.

Hamburg, Germany

(\$) TURNOVER:

~ 50 Million USD annually

> 5,000 worldwide since 2006 | Group track record since 1961 GPA has about 1,000 fenders in service, out of 100,000 worldwide

SELECTED REFERENCES – USA (OF > 350)

TABLE OF CONTENTS.

PART 1: COMPANY PRESENTATION

PART 2: TECHNICAL SESSION

- Berthing Energy Calculation
- Berthing Mode
- Safety Factor

Fender Energy

- Worked Example
- Structural Design of Panels
- Hull Pressure

- Vessel Beltings
- Accessories
- Fender Testing Material Tests
- SFT White Paper Series
- Carbon Black
- Calcium Carbonate
- Fender Testing Compression Test
- Fender Design Failures

BERTHING ENERGY CALCULATION.

BERTHING ENERGY CALCULATION.

ENERGY DEFINED

Energy is the capacity of a physical system to do work

Specifically we are dealing with:

- Kinetic energy vessel
 ½ * mass * velocity²
- Potential energy fender
 force * distance

Capacity of fender system to absorb energy needs to be more than the kinetic energy of vessel

▶ on the safe side

BERTHING ENERGY CALCULATION.

ENERGY

Force

Vehicle in motion: Energy $=\frac{1}{2} * m * v^2$

ENERGY

Brake soft

Stopping distance

Stopping Distance

BERTHING ENERGY CALCULATION.

COLLECTION OF DATA

Design Vessels (type, size, dimension)

Location (Exposed / Sheltered)

- Berth Structure (Quay Wall / Piled)
- Environmental Conditions (Tidal Range, Winds, Currents)
- Support Structure (Dimensions / Load Capacity)
- Design Life

The more information available, the more suitable the fender design will be.

BERTHING ENERGY CALCULATION.

$$E = 0.5 * M_{D} * v_{B}^{2} * C_{E} * C_{M} * C_{C} * C_{S}$$

Berthing energy sensitive to berthing velocity

BERTHING MODE -CONTINUOUS JETTY.

Contact point assumed to be within 1/4 length from end

Typically container, cargo, multi-use berths

Low impact on energy if vessel berths out of position (impact distance R unchanged)

BERTHING MODE -DOLPHINS.

Contact point assumed to be within 1/3 length from end (distance should be confirmed)

Typically oil, gas and bulk liquids berths

High impact on energy if vessel berths out of position (R reduced, C_E higher, Energy higher)

PIANC recommends +/- 5% of L_{OA}

SAFETY FACTOR.

A Factor of Safety should be applied to the calculated berthing energy such that the fender system will be capable of absorbing *reasonable abnormal impacts*, which may be caused by mishandling, malfunction, adverse wind and current or a combination of all. Consideration should be given to:

Consequence of failure (high cost / lost revenue)

- Frequency of use of berth / design life
- Load sensitive structures
- Range of vessels using the berth
- Hazardous cargoes (environmental damage)

SAFETY FACTOR (ABNORMAL IMPACT)

PIANC 2002		
Vessel class	Largest	Smallest
Tankers & Bulk carriers	1.25	1.75
Gas carriers	1.50 – 2.00	
Container ships	1.50	2.00
General cargo	1.75	
RO-RO, Ferries	≥ 2.00	
Tugs, Workboats	2.00	

BS6349 – PART 4 (2014)		
Vessel class	FOS	
Continuous Structures	1.50	
Ferries	2.00	
LPG / LNG	2.00	
Island Berths (Dolphins)	2.00	

CSS Cell Fender Uncompressed

▶ on the safe side

SHIBATAFENDERTEAM

FENDER ENERGY.

SHIBATAFENDERTEAM

FENDER ENERGY.

DEFLECTION (%)

on the safe side

SHIBATAFENDERTEAM

FENDER ENERGY.

DEFLECTION (%)

SHIBATAFENDERTEAM

FENDER ENERGY.

on the safe side

SHIBATAFENDERTEAM

FENDER ENERGY.

DEFLECTION (%)

Energy = Area under Load Deflection Curve

Expressed as a curve on 2nd y-axis

52.5% Deflection

Performance subject to +/-10% tolerance

WORKED EXAMPLE – ALTERNATIVE.

WORKED EXAMPLE – ALTERNATIVE.

WORKED EXAMPLE - ALTERNATIVE COMPARISON.

DESIGN BERTHING ENERGY EA = 457.2 kN.m

1 x CSS 1250 (G2.5)

Energy Capacity

<u>E_{RPD} = 575 kNm [424 kip-ft]</u>

Reaction Force

R_{RPD} = 1,045 kN [235 kip]

<u>R_{MAX} = 1188.6 kN [267.2 kip]</u>

2 x SPC 800 (G2.4)

Energy Capacity

<u>E_{RPD} = 280 kNm [206 kip-ft] x2 = 560 kNm [412 kip-ft]</u>

Reaction Force

 $R_{RPD} = 667 \text{ kN} [150 \text{ kip}]$

<u>R_{MAX} = 758.6 kN [170.5 kip] x2 = 1,517.2 kN [341 kip]</u>

BERTHING ENERGY CALCULATION.

STRUCTURAL DESIGN OF PANELS.

STRUCTURAL DESIGN OF PANELS - LOAD CASES.

LOAD CASE 1 – HULL PRESSURE

STRUCTURAL DESIGN OF PANELS - LOAD CASES.

LOAD CASE 2 – BELTING CONTACT

STRUCTURAL DESIGN OF PANELS - LOAD CASES.

LOAD CASE 3 – LOW CONTACT

STEEL PANEL DESIGN – EXAMPLE FEA ANALYSIS.

Wide panel

Narrow panel

SHIBATAFENDERTEAM

on the safe side

SHIBATAFENDERTEAM

HULL PRESSURE.

LIMITATIONS

CLASS	SIZE	PRESSURE kN/m² (ĸPa)
Oil tankers	Handysize Handymax Panamax or bigger VLCC	≤ 300 ≤ 300 ≤ 350 150-200
Bulk carriers	All sizes	≤ 200
Container	Feeder Panamax Post-Panamax ULVC	≤ 400 ≤ 300 ≤ 250 ≤ 200
General Cargo	≤ 20,000DWT >20,000DWT	400700 ≤ 400
RoRo & Ferries	Not applicable – usually belted	

Typical hull pressure limitations:

- Recommended limits based on vessel type and class
- Hull pressure limits based on panel contact area and reaction force
- To prevent damage to vessel hull

SHIBATAFENDERTEAM

HULL PRESSURE.

AVERAGE HULL PRESSURE

Hull pressure based on panel contact area

$$\overline{\mathrm{HP}} = \frac{\sum \mathrm{R}}{\mathrm{W} \ast \mathrm{H}}$$

HP = Average hull pressure

SR = Sum of all fender Reaction Forces

FENDER WITHIN TOP 1/3 OF PANEL

FENDER WITHIN MIDDLE 1/3 OF PANEL

HP Distribution

R

Reduced "Peak" Pressure

Improved layout for Hull Pressure Distribution

SYMMETRICAL SYSTEMS

LOW LEVEL CONTACT

LOW LEVEL CONTACT

Panel will rotate

- Force translated to vessel by tension chain force and panel bending moment
- Panel Line load only
- Expressed as Force / metre
- Vessel should be checked for line load generated

EFFECTS OF VESSEL BELTINGS.

EFFECTS OF VESSEL BELTINGS.

VESSEL PROTECTION

Beltings (or "steel fenders") are protection for the vessel

SHIBATAFENDERTEAM

on the safe side

- Installed at or just above waterline
- Common on ferries, cruise ships, barges
- Also used on smaller feeder vessels (general cargo, container, bulk liquids)

EFFECTS OF VESSEL BELTINGS CHAMFERS.

PANEL CHAMFERS

Chamfers needed to prevent beltings getting caught on panels during tidal variations, loading etc.

SHIBATAFENDERTEAM

▶ on the safe side

EFFECTS OF VESSEL BELTINGS CHAMFERS.

► RESULTS OF INCORRECT CHAMFER/PANEL DESIGNS

ACCESSORIES – CHAINS.

ACCESSORIES - ANCHORS.

ACI 318M – APPENDIX D / EUROCODE 2 – CCD METHOD

Concrete Failure Mechanisms

EDGE DISTANCE

Concrete pull-out capacity needs to be checked wherever anchors are close to the concrete edge

SHIBATAFENDERTEAM

▶ on the safe side

If pull-out capacity is insufficient, entire load should be tied into structure using reinforcing bar

ACCESSORIES - ANCHORS.

© ShibataFenderTeam 2019

FENDER TESTING -MATERIAL TESTS.

FENDER TESTING -COMPOUNDS.

RUBBER COMPOUNDS

Elastomer

Natural Rubber (NR) / Styrene-Butadiene (SBR)

Reinforcing Agent

Carbon Black

Curing Agent

Sulphur (for vulcanisation)

Retardants (slow curing – thick sections)

Other Additives

UV Stabilisation / Procesability (CaCO3)

SHIBATAFENDERTEAM

SHIBATAFENDERTEAM

FENDER TESTING -PRODUCTION.

Vulcanising

De-Molding

Injecting

SFT WHITE PAPER SERIES.

SFT WHITE PAPER SERIES.

SFT Whitepaper Series: #1 Compounding | #2 Mixing | #3 Curing | #4 Testing

CARBON BLACK – ESSENTIAL IN MEASURES.

▶ on the safe side

THE PARTICLE SIZE.

1

Figure 2: Modulus vs. particle size of CB (CB 33 %)

INFLUENCE OF CARBON BLACK ON TENSILE STRENGTH.

Figure 1: Typical influence of CB on tensile strength in NR compounds

CALCIUM CARBONATE – BETTER THAN ITS REPUTATION.

CALCIUM CARBONATE – BETTER THAN ITS REPUTATION.

Enhances processability

Improves behavior during vulcanization

Improves compression set result

Right amount in small particles has a distinct reinforcing effect

FENDER TESTING -COMPRESSION TEST.

FENDER TESTING -COMPRESSION TEST.

PIANC 2002 COMPRESSION TEST PROCEDURE

- Fender temperature to be stabilised at 23C+/- 5 degrees prior to test (or adjust results for temperature)
- Fender to be pre-compressed a minimum of three times to break-in the fender
- Fender to be rested for a minimum of 1 hour before final test
- Fender compressed at a constant velocity of between 2-8 cm/min
- Reaction (+/- 1kN) and Deflection (+/- 1mm) shall be recorded during compression
- Energy calculated from the Load / Deflection curve
- Energy and Reaction should be within the prescribed tolerance (+/- 10%)

PERFORMANCE TEST CRITERIA.

Test Curve

PERFORMANCE TEST CRITERIA.

Test Curve

PERFORMANCE TEST FACTORY ACCEPTANCE TEST.

BENEFITS OF TESTING AT FACTORY LOCATION?

Purpose-built and calibrated test-equipment available

Performance testing can be carried out earlier in the manufacturing schedule

Tests can we witnessed by third-party inspectors and/or our client

- Selection of fenders can be on-site during testing
- Less cost and time involved should additional testing be required

Avoid 12+ week project delays in case of issues during testing.

FENDER DESIGN FAILURES.

FENDER/PANEL POSITION & CHAIN LAYOUT.

SHIBATAFENDERTEAM

Incorrect solution by low cost supplier

Causes:

- P1 Unfavorable panel position. Rubber fender installed too close to the top edge of the panel. Deflection by dead weight. "Propeller" Fender System.
- P2 Chains with the incorrect angle and length not protecting the fender rubber unit, even normal tension/weight/shear loads.
- P3 Low rubber quality. Incorrect Design. Rubber fender is "sagging.

Consequences:

- High peak hull pressure onto vessels' hull.
- Potential damage to the vessels' hull.
- Panel self weight supported by rubber instead by the chains.
- Torsion and bending loads damaging the rubber unit
- Cracks and damages in the rubber.
- Lower fender performance
- Reduction of life cycle of the system.
- Increase in maintenance and replacement costs
- Additional losses for stopping operations during replacement/maintenance.

STEEL PANEL INTERNAL STRUCTURE.

Incorrect solution by low cost supplier

Causes:

- Panel internal structure under sized.
- Wrong structural calculation.
- Thickness of the steel beams is lower than required for the applicable load cases.

Consequences:

- Bent Panel.
- Increase of hull pressure onto vessels.
- Dramatic reduction of the life cycle of the systems.
- Increase in maintenance and replacement costs.
- Additional losses for stopping operations during replacement/maintenance.

INVERTED FENDER EXAMPLE.

FENDER DESIGN -HOLISTIC APPROACH.

SHIBATAFENDERTEAM

CONCLUSION

- Work with established manufacturers only
- Gather all vital data for the design
- The most efficient fender, might not be the most suitable fender for your project
- Incorrect information can lead to substantial liability claims
- Understand importance of specifications
- Don't fall for marketing schemes leading to sole sources
- What might look good on a drawing, might not work in the field

THANK YOU FOR YOUR ATTENTION!

For more information visit us at booth #33 or www.shibata-fender.team