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HEADQUARTERS: Hamburg, Germany

TURNOVER: ~ 50 Million USD annually

DELIVERED PROJECTS: > 5,000 worldwide since 2006 | Group track record since 1961 
GPA has about 1,000 fenders in service, out of 100,000 worldwide

SHIBATAFENDERTEAM GROUP.
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SELECTED REFERENCES – USA (OF > 350)
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BERTHING ENERGY CALCULATION.
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BERTHING ENERGY CALCULATION.

Energy is the capacity of a physical system to do work

Specifically we are dealing with:

▶Kinetic energy – vessel ½ * mass * velocity2

▶Potential energy – fender force * distance

Capacity of fender system to absorb energy needs to be more than the kinetic energy of vessel

ENERGY DEFINED
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BERTHING ENERGY CALCULATION.

Vehicle in motion: Energy = (
) ∗ m ∗ v)

ENERGY
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BERTHING ENERGY CALCULATION.

▶Design Vessels (type, size, dimension)

▶Location (Exposed / Sheltered)

▶Berth Structure (Quay Wall / Piled)

▶Environmental Conditions (Tidal Range, Winds, Currents)

▶Support Structure (Dimensions / Load Capacity)

▶Design Life

The more information available, the more suitable the fender design will be.

COLLECTION OF DATA
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E = 0.5 * MD * vB
2 * CE * CM * CC * CS

Berthing energy sensitive to berthing velocity

BERTHING ENERGY CALCULATION.



© ShibataFenderTeam 2019

BERTHING MODE.
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BERTHING MODE -
CONTINUOUS JETTY.

▶Contact point assumed to be within 1/4 length from end

▶Typically container, cargo, multi-use berths

▶Low impact on energy if vessel berths out of position (impact distance R unchanged)

R R <25%
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BERTHING MODE -
DOLPHINS.

▶Contact point assumed to be within 1/3 length from end (distance should be confirmed)

▶Typically oil, gas and bulk liquids berths

▶High impact on energy if vessel berths out of position (R reduced, CE higher, Energy higher)

▶PIANC recommends +/- 5% of LOA

R 33%R
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SAFETY FACTOR.
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SAFETY FACTOR.

A Factor of Safety should be applied to the calculated berthing energy such that the fender system 
will be capable of absorbing reasonable abnormal impacts, which may be caused by mishandling, 
malfunction, adverse wind and current or a combination of all.  Consideration should be given to:

▶Consequence of failure (high cost / lost revenue)

▶Frequency of use of berth / design life

▶Load sensitive structures

▶Range of vessels using the berth

▶Hazardous cargoes (environmental damage)
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SAFETY FACTOR GUIDELINES.

SAFETY FACTOR (ABNORMAL IMPACT)

PIANC 2002
Vessel class Largest Smallest
Tankers & Bulk carriers 1.25 1.75

Gas carriers 1.50 – 2.00

Container ships 1.50 2.00

General cargo 1.75

RO-RO, Ferries ≥ 2.00

Tugs, Workboats 2.00

BS6349 – PART 4 (2014)
Vessel class FOS
Continuous Structures 1.50

Ferries 2.00

LPG / LNG 2.00

Island Berths (Dolphins) 2.00



© ShibataFenderTeam 2019

FENDER ENERGY.
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FENDER ENERGY.

CSS Cell Fender
Uncompressed
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FENDER ENERGY.

Force Applied
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FENDER ENERGY.
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FENDER ENERGY.

20% Deflection
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FENDER ENERGY.

30% Deflection
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FENDER ENERGY.

40% Deflection

0 10 20 30 40 50 52.5

0

20

40

60

80

100

DEFLECTION  (%)

RE
AC

TI
ON

  (
%

)



© ShibataFenderTeam 2019 24

FENDER ENERGY.

52.5% Deflection
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FENDER ENERGY.

Energy = Area under Load Deflection Curve

RATED
ENERGY
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FENDER ENERGY.

RATED
ENERGY
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FENDER ENERGY.
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WORKED EXAMPLE – ALTERNATIVE.
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WORKED EXAMPLE – ALTERNATIVE.

HH
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WORKED EXAMPLE  - ALTERNATIVE
COMPARISON.

1 x CSS 1250 (G2.5)

Energy Capacity

ERPD = 575 kNm [424 kip-ft]

Reaction Force 

RRPD = 1,045 kN [235 kip]

RMAX = 1188.6 kN [267.2 kip]

DESIGN BERTHING ENERGY EA = 457.2 kN.m

2 x SPC 800 (G2.4)

Energy Capacity

ERPD = 280 kNm [206 kip-ft]  x2 = 560 kNm [412 kip-ft]  

Reaction Force 

RRPD = 667 kN [150 kip]

RMAX = 758.6 kN [170.5 kip] x2 = 1,517.2 kN [341 kip]
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BERTHING ENERGY CALCULATION.

ENERGY
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STRUCTURAL DESIGN OF PANELS.
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STRUCTURAL DESIGN OF PANELS -
LOAD CASES.

LOAD CASE 1 – HULL PRESSURE

Evenly
distributed
pressure

Force Diagram

Low
bending
moments

Moment Diagram
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STRUCTURAL DESIGN OF PANELS -
LOAD CASES.

LOAD CASE 2 – BELTING CONTACT

Large
bending
moments

Moment Diagram

High 
point
loads

Force Diagram
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STRUCTURAL DESIGN OF PANELS -
LOAD CASES.

LOAD CASE 3 – LOW CONTACT

Moderate
to large
moments

Moment Diagram

High
point
loads

Force Diagram
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STEEL PANEL DESIGN – EXAMPLE
FEA ANALYSIS.

Narrow panel Wide panel
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HULL PRESSURE.
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HULL PRESSURE.

LIMITATIONS

Typical hull pressure limitations:

▶Recommended limits based on vessel type and 
class

▶Hull pressure limits based on panel contact area 
and reaction force

▶To prevent damage to vessel hull
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HULL PRESSURE.

AVERAGE HULL PRESSURE

W

H

Hull pressure based on panel contact area

HP =  Average hull pressure
SR = Sum of all fender Reaction Forces

HP = ∑%
&∗(
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HULL PRESSURE – DISTRIBUTION.

FENDER WITHIN TOP 1/3 OF PANEL

1/3
L

2*L

HP Distribution

R

INEFFECTIVE
FOR HULL
PRESSURE

▶High “Peak” Pressure
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HULL PRESSURE – DISTRIBUTION.

FENDER WITHIN MIDDLE 1/3 OF PANEL

1/3

HP Distribution

R

▶Reduced “Peak” Pressure

▶Improved layout for Hull 
Pressure Distribution
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HULL PRESSURE – DISTRIBUTION.

SYMMETRICAL SYSTEMS

▶Even hull pressure 
distribution

▶More common layout for 
LNG, oil & gas projects

HP Distribution

R

R
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HULL PRESSURE – DISTRIBUTION.

LOW LEVEL CONTACT
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▶Panel will rotate

▶Force translated to vessel by 
tension chain force and panel 
bending moment

▶Panel Line load only

▶Expressed as Force / metre

▶Vessel should be checked for 
line load generated

T

M

44

HULL PRESSURE – DISTRIBUTION.

LOW LEVEL CONTACT

F

HP Distribution

R

F
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EFFECTS OF VESSEL BELTINGS.
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EFFECTS OF VESSEL BELTINGS.

VESSEL PROTECTION

Beltings (or “steel fenders”) are protection for 
the vessel

▶Installed at or just above waterline

▶Common on ferries, cruise ships, barges

▶Also used on smaller feeder vessels (general 
cargo, container, bulk liquids)
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EFFECTS OF VESSEL BELTINGS
CHAMFERS.

PANEL CHAMFERS

▶Chamfers needed to prevent beltings getting 
caught on panels during tidal variations, 
loading etc.
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▶RESULTS OF INCORRECT CHAMFER/PANEL DESIGNS

EFFECTS OF VESSEL BELTINGS CHAMFERS.
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ACCESSORIES.
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ACCESSORIES – CHAINS.
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ACCESSORIES - ANCHORS.

ACI 318M – APPENDIX D / EUROCODE 2 – CCD METHOD

▶Concrete Failure Mechanisms
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ACCESSORIES - ANCHORS.

EDGE DISTANCE

Concrete pull-out capacity needs to be checked 
wherever anchors are close to the concrete edge

If pull-out capacity is insufficient, entire load 
should be tied into structure using reinforcing bar
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FENDER TESTING -
MATERIAL TESTS.
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FENDER TESTING -
COMPOUNDS.

Elastomer
▶Natural Rubber (NR) / Styrene-Butadiene (SBR)

Reinforcing Agent
▶Carbon Black

Curing Agent
▶Sulphur (for vulcanisation)

▶Retardants (slow curing – thick sections)

Other Additives
▶UV Stabilisation / Procesability (CaCO3)

RUBBER COMPOUNDS
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FENDER TESTING -
PRODUCTION.

Compounding Mixing

InjectingVulcanisingDe-Molding
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SFT WHITE PAPER SERIES.
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SFT WHITE PAPER SERIES.
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CARBON BLACK – ESSENTIAL IN MEASURES.
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THE PARTICLE SIZE.
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INFLUENCE OF CARBON BLACK ON TENSILE 
STRENGTH.
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CALCIUM CARBONATE – BETTER THAN ITS 
REPUTATION.

61
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CALCIUM CARBONATE – BETTER THAN ITS 
REPUTATION.

▶ Enhances processability

▶ Improves behavior during vulcanization

▶ Improves compression set result

▶ Right amount in small particles has a distinct reinforcing effect
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FENDER TESTING -
COMPRESSION TEST.

63
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FENDER TESTING -
COMPRESSION TEST.

▶Fender temperature to be stabilised at 23C+/- 5 degrees prior to test (or adjust results for 
temperature)

▶Fender to be pre-compressed a minimum of three times to break-in the fender

▶Fender to be rested for a minimum of 1 hour before final test

▶Fender compressed at a constant velocity of between 2-8 cm/min

▶Reaction (+/- 1kN) and Deflection (+/- 1mm) shall be recorded during compression

▶Energy calculated from the Load / Deflection curve

▶Energy and Reaction should be within the prescribed tolerance (+/- 10%)

PIANC 2002 COMPRESSION TEST PROCEDURE
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PERFORMANCE TEST
CRITERIA.

Test Curve
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PERFORMANCE TEST
CRITERIA.

Test Curve
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PERFORMANCE TEST
CRITERIA.
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DEFLECTION IS NOT A PASS / FAIL CRITERIA!
PIANC:2002 Section 6.1.2
ASTM F2192 Item 7.1.2Test Limits
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PERFORMANCE TEST
FACTORY ACCEPTANCE TEST.

BENEFITS OF TESTING AT FACTORY LOCATION? 

▶Purpose-built and calibrated test-equipment available

▶Performance testing can be carried out earlier in the manufacturing schedule

▶Tests can we witnessed by third-party inspectors and/or our client

▶Selection of fenders can be on-site during testing

▶Less cost and time involved should additional testing be required

▶Avoid 12+ week project delays in case of issues during testing.
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FENDER DESIGN FAILURES.
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FENDER/PANEL POSITION & 
CHAIN LAYOUT.

Incorrect solution by low cost supplier

Causes:

▶ P1 – Unfavorable panel position. Rubber fender installed too close to the top edge of the panel. 
Deflection by dead weight. “Propeller” Fender System.

▶ P2 – Chains with the incorrect angle and length not protecting the fender rubber unit, even 
normal tension/weight/shear loads. 

▶ P3  – Low rubber quality. Incorrect Design.  Rubber fender is ¨sagging. 

Consequences:

▶ High peak hull pressure onto vessels’ hull.

▶ Potential damage to the vessels’ hull.

▶ Panel self weight supported by rubber instead by the chains.

▶ Torsion and bending loads damaging the rubber unit

▶ Cracks and damages in the rubber.

▶ Lower fender performance

▶ Reduction of life cycle of the system.

▶ Increase in maintenance and replacement costs

▶ Additional losses for stopping operations during replacement/maintenance.
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STEEL PANEL INTERNAL STRUCTURE.

Incorrect solution by low cost supplier

Causes:

▶ Panel internal structure under sized.

▶Wrong structural calculation.

▶ Thickness of the steel beams is lower than required for the 
applicable load cases.

Consequences:

▶ Bent Panel.

▶ Increase of hull pressure onto vessels.

▶Dramatic reduction of the life cycle of the systems.

▶ Increase in maintenance and replacement costs.
▶Additional losses for stopping operations during 

replacement/maintenance.
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INVERTED FENDER EXAMPLE.
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FENDER DESIGN -
HOLISTIC APPROACH.

CONCLUSION 

▶Work with established manufacturers only

▶Gather all vital data for the design

▶The most efficient fender, might not be the most suitable fender for your project 

▶Incorrect information can lead to substantial liability claims

▶Understand importance of specifications

▶Don’t fall for marketing schemes leading to sole sources 

▶What might look good on a drawing, might not work in the field
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THANK YOU FOR YOUR ATTENTION!

For more information visit us at 
booth #33 

or
www.shibata-fender.team
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