The Benefits of an Integrated Approach

The Challenge

- Taking a decision on port development is complex
- Many factors drive a "go" or "no-go" decision Capacity, Demand, Impact, Capital Expense, Operating Expense, Cash Flow, Labor, Flexibility, Technology
- Complexity manifests in a mix of plans and analyses that are very *poorly integrated*
- Complexity <u>narrows the range of options to be</u> considered, in full, in a short time frame
- The "go" / "no-go" decision can end up driven by flawed analysis of poor choices

PRIME

- <u>Port / Rail / Intermodal Modeling Environment</u>
- Integrated platform that allows rapid, robust planning and operational analysis of goods movement terminals
- Suitable for
 - Conceptual planning
 - Master planning
 - Phased development analysis
 - Due diligence
- Site planning in Microsoft Visio
- Operational model in Microsoft Excel
- Tight, direct integration between plans and model

- The example shows the staged conversion of a marine container terminal
 - Three berths
 - On-dock intermodal container yard for double-stack operations
- Initial configuration uses 1-over-2 straddle carriers for most container storage and all transport
- Final configuration uses 1-over-5 automated stacking cranes (ASCs) for most container storage, and manned shuttle carriers for all transport

Initial Layout

PARSONS

"Parallel ASC" Option

ARSONS

Yard Components

- Straddle Carrier-based storage
- Container gaps specified by planner
- Clearance gaps indicated
- Slot counts automatically calculated by the shape

- Stacking crane-based storage
- Crane, rail, end zone, clearance dimensions fixed
- Storage area stretches with shape
- Slot counts automatically calculated

7

Phased Development – Phases 1, 2

- Phases developed to allow continued safe operation during transition
- "a" phases reflect decommissioning an area for construction
- "b" phases reflect the completion of a conversion phase
- Components in each phase configured to keep the yard in balance
- Requires close coordination between plans and capacity model
- Capacity model must track both reduction and augmentation of capacity
- Capacity model must deal with operational costs and performance at each phase

Phases 2, 3

WSP

Phases 4, 5

WSP

Phased Development

<u>Block Type:</u>	Capacity				
Side Pick / ECH:	2,100	TGS			
Auto Stacking Crane:	12,616	TGS			
Reefer Rack:	452	FGS			
In Gate Sec:	4	Lanes			
In Gate OCR:	14	Lanes			
In Gate Pedestal:	20	Lanes			
Out Gate Pedestal:	15	Lanes			
Out Gate Sec:	4	Lanes			

- Storage capacities and other site characteristics calculated automatically
- Displayed on the drawing
- Transferred to the analysis model

Statistics Transferred to Model

	9:11:37										
Block Name	A0	A1a	A1b	A2a	A2b	A3a	A3b	A4a	A4b	A5a	A5b
RfRk ASC	0	0	96	96	192	192	304	304	304	304	304
RfRk Strad	656	656	656	656	824	544	636	448	428	428	600
SP	2,340	2,340	2,340	2,340	2,340	2,340	2,140	2,140	2,140	2,100	2,100
Strad	11,849	7,980	8,442	4,774	4,774	4,158	4,158	784	1,400	0	0
ASC/MS	0	0	2,400	2,400	4,800	4,800	7,472	7,472	10,672	10,672	13,072

- All elements of the Visio drawing are scanned
- All elements are reported directly to the Excel model
- Storage capacities are presented as 20-foot ground slots

Statistics Transferred to Model

	Storage Blocks in Visio Layout: PRIME Demo 160308.vsdm on 3/8/2016 at 09:11:37											
Block Name	A0	A1a	A1b	A2a	A2b	A3a	A3b	A4a	A4b	A5a	A5b	
SP	6	6	6	6	6	6	6	6	6	4	4	
Strad	29	21	21	16	16	12	12	4	4	0	0	
0	656	656	656	656	656	376	376	188	84	84	0	
Ν	0	0	0	0	168	168	260	260	344	344	600	
RfRk ASC	0	0	6	6	12	12	19	19	19	19	19	
ASC/MS	0	0	6	6	12	12	19	19	27	27	33	
Subtotal ASC	0	0	6	6	12	12	19	19	27	27	33	
ASC/XX	0	0	0	0	1	1	0	0	1	1	0	
Active ASC	0	0	6	6	12	12	19	19	27	27	33	
Built ASC Blocks	0	0	6	6	13	13	19	19	28	28	33	
	Berth Ava	ilability										
Block Name	A0	A1a	A1b	A2a	A2b	A3a	A3b	A4a	A4b	A5a	A5b	
Wharf	5,175	5,175	5,175	5,175	5,175	5,175	5,175	5,175	5,175	5,175	5,175	
Berth Out	0	0	0	0	0	0	0	0	0	0	0	
Net Berth	5,175	5,175	5,175	5,175	5,175	5,175	5,175	5,175	5,175	5,175	5,175	

- Storage block counts
- Wharf length

Statistics Transferred to Model

Block Name	A0	A1a	A1b	A2a	A2b	A3a	A3b	A4a	A4b	A5a	A5b
IGate Bth_0	4	4	4	4	4	4	4	4	4	4	4
IGate Lns_1	14	14	14	14	14	14	14	14	14	14	14
IGate Lns_0	20	20	20	20	20	20	20	20	20	20	20
OGate Lns_0	15	15	15	15	15	15	15	15	15	15	15
OGate Bth_0	4	4	4	4	4	4	4	4	4	4	4
In/Out Peds	35	35	35	35	35	35	35	35	35	35	35
Track	34,090	34,090	34,090	34,090	34,090	34,090	34,090	34,090	34,090	34,090	34,090

- Gate lanes
- Intermodal rail working tracks

Infrastructure Elements

- Electrical distribution system laid out in the phased plans
- Quantities transferred to the analysis model

Block Name	A0	A1a	A1b	A2a	A2b	A3a	A3b	A4a	A4b	A5a	A5b	
ElecA	0	0	10,058	10,058	10,058	10,058	10,058	10,058	10,058	10,058	10,058	Ring Main
ElecB	0	0	734	734	2,339	2,339	2,339	2,339	3,892	3,892	3,892	ASC Distribuition
ElecC	0	0	1,882	1,882	3,504	3,504	3,504	3,504	5,079	5,079	5,079	Reefer Distribution

Analysis Model

- Excel-based static model
- Tied to plan via direct bilateral data transfer
- Berth-constrained capacity
- Yard-constrained capacity
- Rail yard capacity
- Gate requirements
- Equipment requirements and utilization
- Demand timing
- Capital expense estimation
- Operating expense estimation
- Cash flow estimation

Container Yard & Throughput Capacity

Berth- and Yard-Constrained Capacity

echnology

Phase Timing vs. Demand

19

Equipment Fleet Sizing

WSP

Machine Operating Hours per Year

ARSONS

PORT&TERMINAL

Technology

21

Capex Cash Flow

PORT&TERMINAL

Technology

Conclusion

- Changes in the site plan are <u>immediately reflected</u> in all aspects of terminal performance
 - Capacity
 - Machine requirements and utilization
 - Traffic, rail, and emissions impacts
 - Labor required
 - Development phases and their timing vs. demand
 - Project development elements
 - Capital and operating expense cash flow
- Go / no-go decisions are more robust, cover more options, are reached more quickly, at lower cost
- Cheaper, Faster, AND Better

The Wider View

