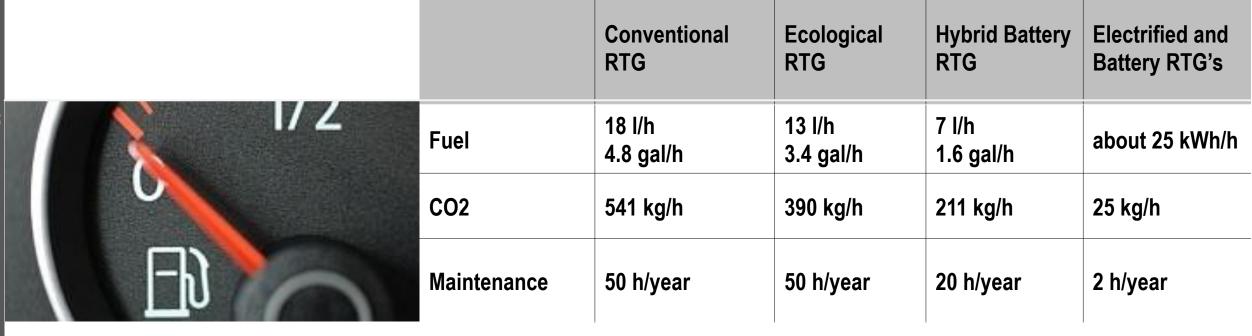
We move your business!

Energy & Data Transmission Systems

Port & Terminal Technology Savanah, GA 2019

OPEX Savings with Batteries on RTG's

OPEX Savings with Batteries on RTG's

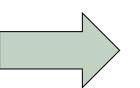

- Introduction to clean technologies on RTG's
- Battery solutions on RTG's
 - a) Hybrid-RTG
 - b) Full E-RTG (Battery for block change + E-RTG system)
 - c) Battery E-RTG (BE-RTG)
- Outlook: Hydrogen and Fuel Cell's on RTG

Introduction to Clean Technologies on RTG's

Different concepts to reduce fuel consumption and maintenance as well as emissions:

E-RTG solution = fuel and maintenance cost reduction and low or Zero Emission

E-RTG Solutions



Motorized Cable Reel Solutions

 Manual or automatic cable connection to grid power

Conductor Rail Solutions

Manual or automatic connection to grid power

Hybrid Solution

Hybrid with a big battery pack and a small onboard genset

- ✓ Full E-RTG
- ✓ Battery E-RTG
- ✓ Fuel Cell Battery E-RTG

OPEX Savings with Batteries on RTG's

OPEX Savings with Batteries on RTG's

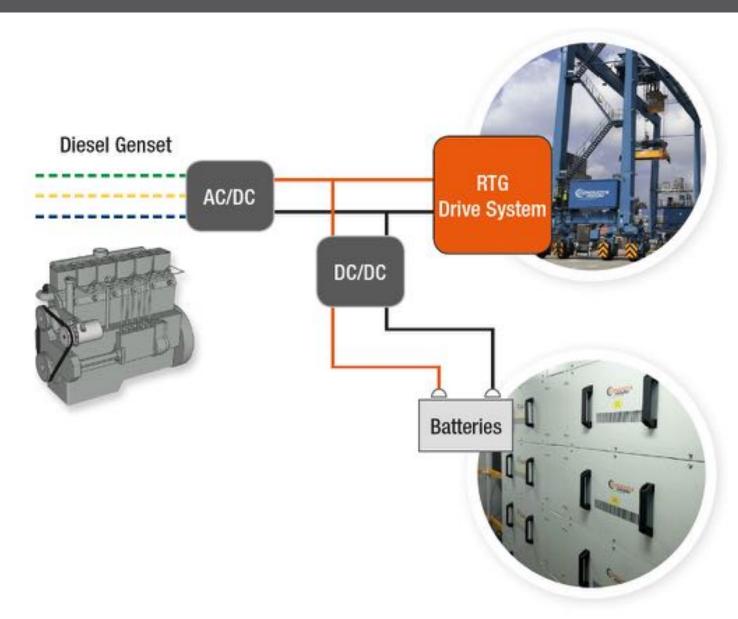
- Battery Solutions on RTG's
 - a) Hybrid-RTG
 - b) Full E-RTG (Battery for block change + E-RTG system)
 - c) Battery E-RTG (BE-RTG)

Hybrid Solution H-RTG

Battery housing mounted under sill beam

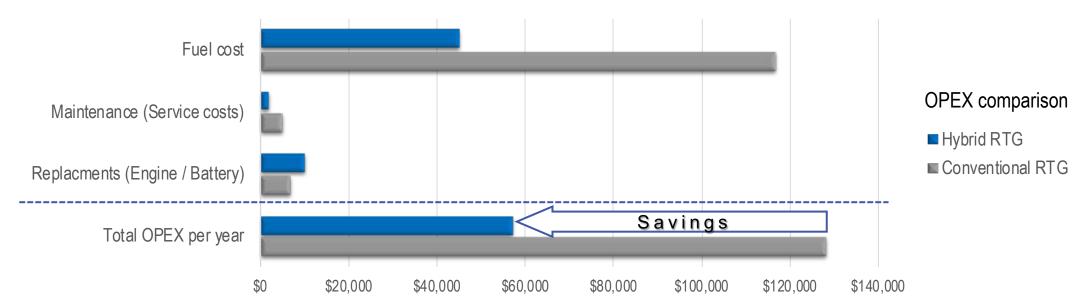
Battery modules inside the housing

Small diesel genset mounted under sill beam


- Equipped with a big battery pack powering all movements
- Small size Genset to charge the battery when needed (e.g. 100kW)
- Hybrid power pack connected to the DC/DC bus

HMI Touch Panel

How Does Hybrid-RTG Work?


Hybrid Solution H-RTG

- Battery pack supports more than 30 container moves without recharging
- Regenerative energy during container lowering is fully utilized to charge the battery
- Up to 60% fuel saving compared with conventional genset
- Less Refueling operations
- Reduce maintenance cost
- Reduce considerably the environmental impact (CO2, NOx, SOx, particulates + noise)
- RTG maintains full operational flexibility (e.g. block changes), no changes in operation
- Independent from power grid
- No yard infrastructure is necessary

OPEX Savings with Hybrid-RTG

	Sample case	Conventional RTG	Hybrid RTG	Savings
		18I/h	7l/h	
Fuel saving per year	10 moves/h, 18 h/day, 300 days/year, 1.2 USD/l	116,640 USD/year	45,090 USD/year	71,550 USD/year
Maintenance service per year	100 USD/h	50h/year -> 5,000 USD/year	20h/year -> 2,000 USD/year	3,000 USD/year
Replacments (Engine / Battery)	15 years operation yearly average	6,670 USD/year	10,000 USD/year	-3,330 USD/year
	71,220 USD/year			

OPEX Savings with Batteries on RTG's

OPEX Savings with Batteries on RTG's

- Battery solutions on RTG's
 - a) Hybrid-RTG
 - b) Full E-RTG (Battery for block change + E-RTG system)
 - c) Battery E-RTG (BE-RTG)

FE-RTG Fully Electrified RTG Block change powered by small battery pack

In Container Yard powered by grid power

Motorized Cable Reel

OR

Conductor Bar System

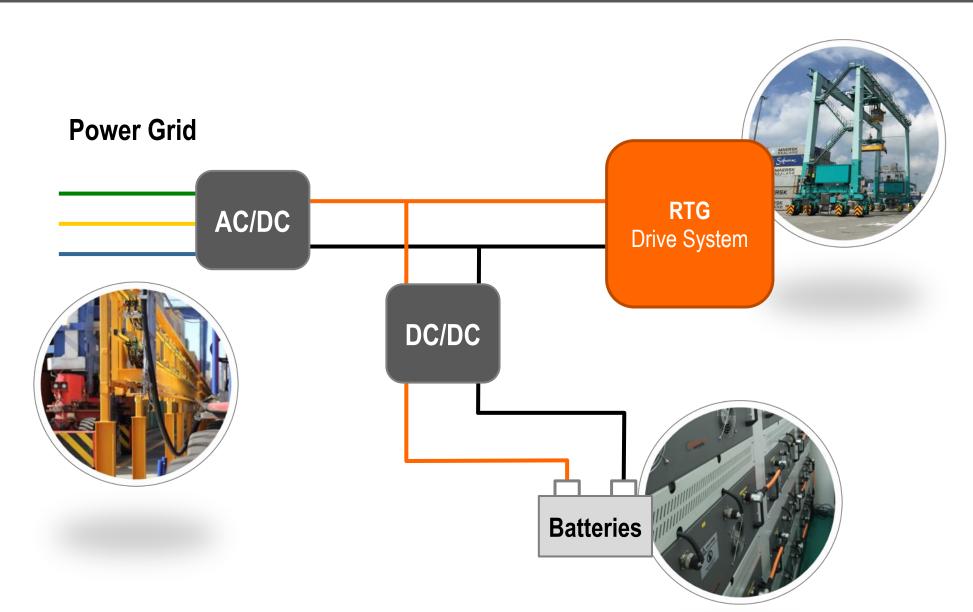
When RTG's are in stacking yard, they are powered by electricity supplied from power grid – either via conductor rails or cable reels

During block changes powered by FE-RTG battery pack

When RTG's are in block changing mode, they are powered by the energy stored in on-board battery pack

FE-RTG Fully Electrified RTG Block change powered by small battery pack

- Li-Ion Battery packs replace the diesel genset
- Gantry travel for block changes up to 4900ft / 1500m powered by small battery system



How Does FE-RTG Work?

FE-RTG Fully Electrified RTG Block change powered by small battery pack

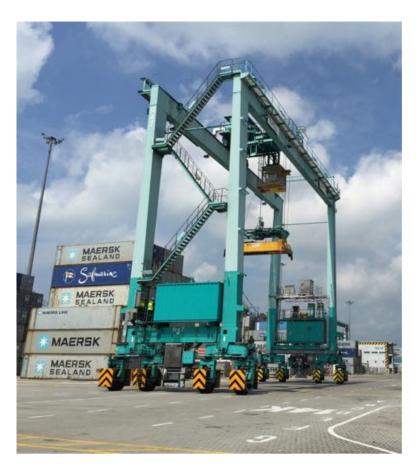
Advantages of Full E-RTG:

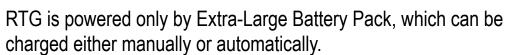
- Reduce operating cost of diesel fuel during stack changes
- Reduce Maintenance cost for diesel engine
- Reduce RTG downtime during engine overhaul
- Store energy from container lowering and reuse during hoisting
- Reduce peak load energy demand from public grid / conductor rails
- Battery technology improving very fast
- Zero Emission (CO2, NOx, SOx, particulates + noise)

OPEX Savings with FE-RTG Battery Pack for Block Changes

		Sample case	E-RTG with engine	Full E-RTG	Savings / Profit	Total
Block change	s powered by		Diesel engine	Battery		
Fuel / Energy year	saving per	10 block changes/day, 300 days/year, 1.2 USD/I, 0.1 USD/kWh	6,000 USD/year	825 USD/year	5,175 USD/year	Total OPEX savings + additional profit through add. uptime 8,275 USD/year
Maintenance year (Engine	•	100 USD/h	20h/year -> 2,000 USD/year	1h/year -> 100 USD/year	1,900 USD/year	
Replacments (Engine / Batt	ery)	15 years operation yearly average	3,333 USD/year	2,133 USD/year	1,200 USD/year	
Increased ope	erational	RTG productivity: Profit 150 USD/h	0	84h/year -> 12,600 USD/year	12,600 USD/year	12,600 USD/year

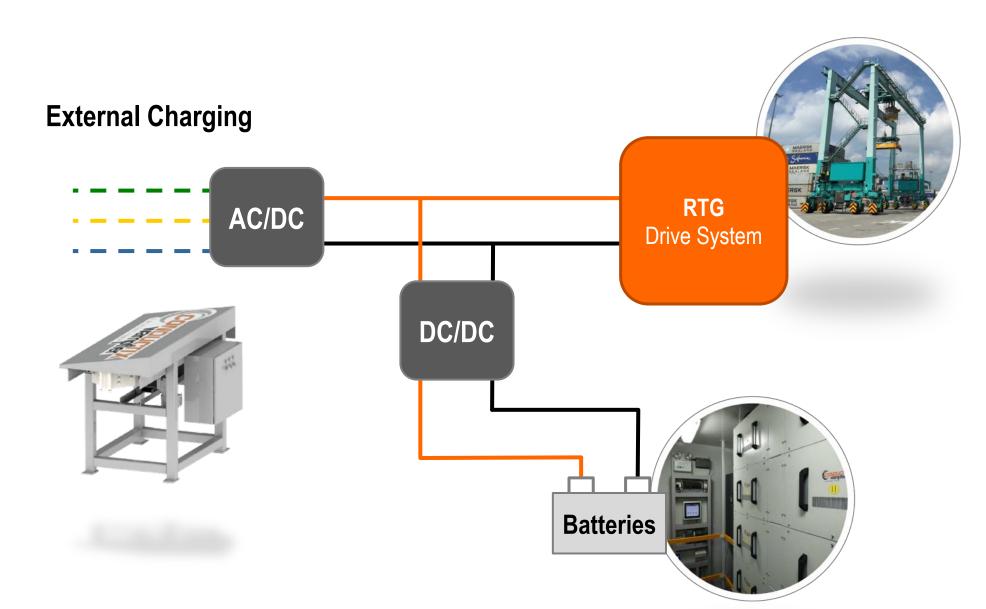
Opex Savings with Batteries on RTG's




Opex Savings with Batteries on RTG's

- Battery Solutions on RTG's
 - a) Hybrid-RTG
 - b) Full E-RTG (Battery for block change + E-RTG system)
 - c) Battery RTG (BE-RTG)

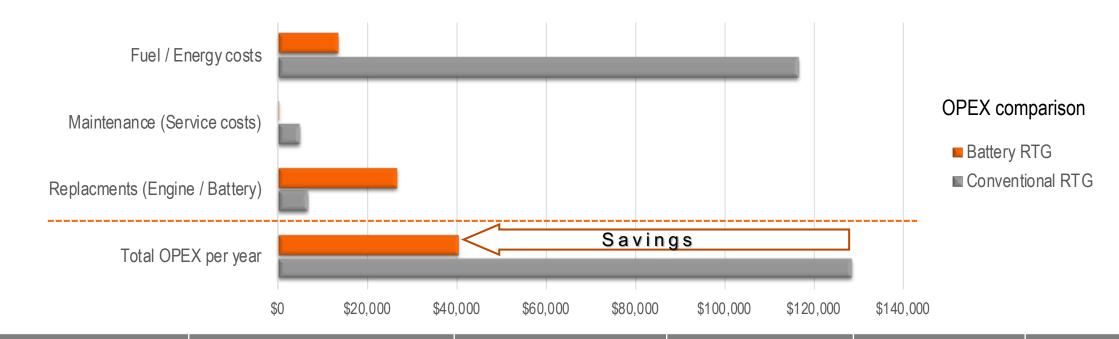
BE-RTG Battery E-RTG with extra large battery pack


Manual charging socket

Automatic charging station

How does BE-RTG work?

BE-RTG Battery E-RTG with extra large battery pack



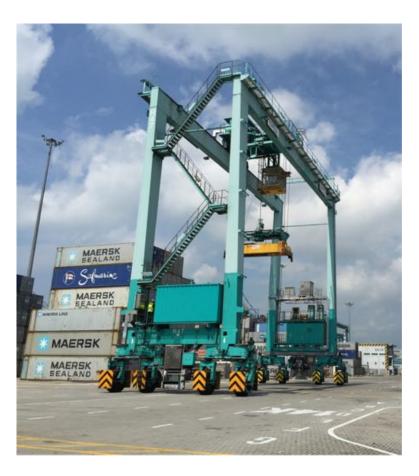
Advantages of BE-RTG:

- Large battery pack supplying power for 1 or 2 work shifts
- Regenerative energy during container lowering is fully utilized to charge the battery
- Almost no maintenance
- A system developed from matured solutions and products
- Needed infrastructures are standard components (substations, charging stations)
- RTG maintains full operational flexibility (e.g. block changes), no changes in operation
- Zero Emission (CO2, NOx, SOx, particulates + noise)

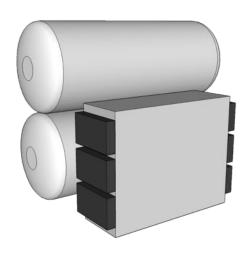
OPEX Savings with Battery RTG (BE-RTG)

	Sample case	Conventional RTG	Battery E-RTG	Savings / Profit	Total
Fuel / Energy saving per year	10 moves/h, 18 h/day, 300 days/year, 1.2 USD/l, 0.1 USD/kWh	116,640 USD/year	13,500 USD/year	103,140 USD/year	Total OPEX savings
Maintenance service per year (Engine / Battery)	100 USD/h	50h/year -> 5,000 USD/year	2h/year -> 200 USD/year	4,800 USD/year	+ additional profit through add. uptime
Replacments (Engine / Battery)	15 years operation yearly average	6,670 USD/year	26,666 USD/year	-19,996 USD/year	87,944 USD/year
Increased operational uptime	RTG productivity: Profit 150 USD/h	0	84h/year -> 12,600 USD/year	12,600 USD/year	12,600 USD/year

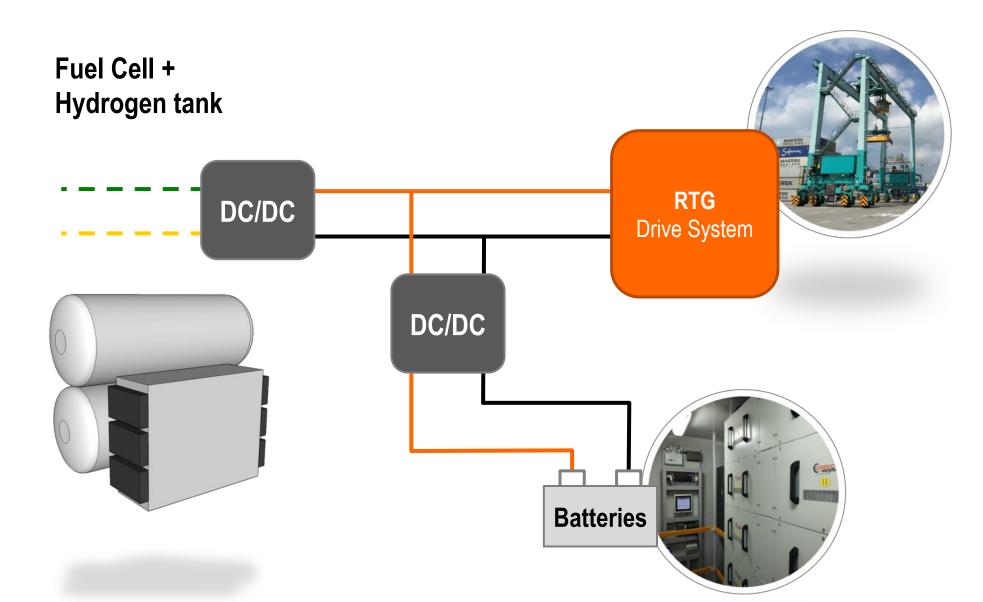
Opex Savings with Batteries on RTG's



OPEX Savings with Batteries on RTG's


- Battery Solutions on RTG's
 - a) Hybrid-RTG
 - b) Full E-RTG (Battery for block change + E-RTG system)
 - c) Battery E-RTG (BE-RTG)
- Outlook: Hydrogen and Fuel Cell's on RTG
- => Why Hydrogen and how can it be used on a RTG?

FBE-RTG Fuel Cell Battery RTG

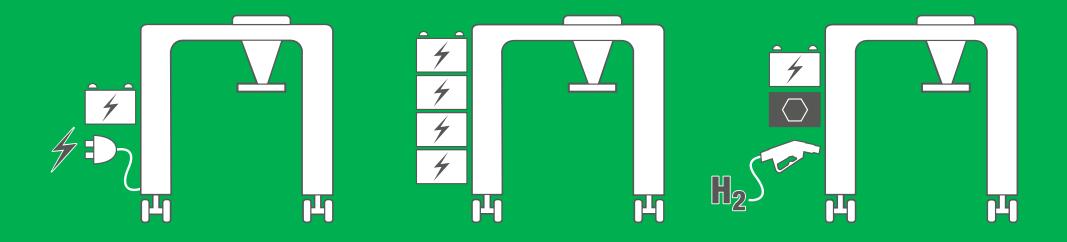


Fuel Cell and H2 tanks

RTG is powered only by Battery Pack, which is charged by on board Fuel Cell, when needed.

How Does FBE-RTG Work?

Energy & Data Transmission Systems


Advantages of FBE-RTG:

FBE-RTG Fuel Cell Battery RTG

- Fast refueling capability with Hydrogen
- Maximized Fuel Cell life time vs. Fuel Cell only
- Battery pack supports more than 30 container moves without recharging (Hybrid concept)
- Regenerative energy during container lowering is fully utilized to charge the battery
- RTG maintains full operational flexibility (e.g. block changes), no changes in operation
- Independent from power grid
- Zero Emission (CO2, NOx, SOx, particulates + noise)

Overview: Zero Emission Solutions for RTG's

FE-RTG

Electrified RTG with grid power and small battery pack

BE-RTG

Electrified RTG with Extra-Large Battery Pack

FBE-RTG

Electrified RTG with fuel cell and battery pack

Thank you for your attention!

Conductix-Wampfler GmbH

mailto: E-RTG@conductix.com |

Phone +49(0) 76 21/6 62-0| Fax: +49 (0) 7621 662 144

Rheinstrasse 27 + 33 | 79576 Weil am Rhein | Germany | Register Court: Freiburg HRB 413485

Chief Executive Officer: Francois Bernes | www.conductix.com