Simulation of Peak Operations at DPWV Centerm Port & Terminal Technology 2016 – Charleston Krystle McBride, AECOM March 22, 2016

Overview

- Project site: DPW Vancouver's Centerm Facility
- Planning, capacity and simulation analysis
- Key Challenge: Project how will the facility perform at more than twice today's volume
- Simulation analysis of future operation at capacity: "stress analysis" of peak loadings:
 - Berth
 - Gate
 - Container Yard
 - Intermodal Yard

Preliminary Future Terminal Plan

Berth Analysis Goals

- Will the relatively modest (by modern standards) future berth length be able to accommodate the target future terminal capacity?
- The effects of container yard congestion will result in reduced productivity when two vessels are present (and all cranes are working): how did this impact capacity as it becomes more frequent?

BERTHA Model

Key Berth Analysis Sensitivity Cases & Results

- Vessel arrival sizes: many small calls, or few large calls (in some cases, large vessel combinations make Centerm effectively a one-berth facility)
- Total quay cranes available, maximum assigned per call, productivity, and potential productivity reductions when several cranes are in operation (congestion effects)
- Vessel lateness (modest vs. high)
- Conclusions:
 - Overall, Centerm will not be limited by berth capacity
 - In worst-case scenarios, there may be some, but not excessive, vessel queuing at-capacity
 - If necessary, Centerm can mitigate queuing by increasing crane assignments per call, or purchasing an additional crane

Gate Analysis

- Centerm is a land-constrained terminal: the gate was designed to occupy as little footprint as possible without impeding performance in order to maximize storage capacity
- Simulation purpose:
 - Validate proposed gate design & modify if necessary
 - Determine whether off-site roadway improvements are necessary (e.g. an overpass to separate road and rail)

GENTRY Simulation Video

Example Gate Simulation Street Queue Length Charts

Above: Peak day queuing with no rail interference

Below: Worst-Case scenario with rail blockages during the busiest hours on peak days

Key Gate Analysis Results

- The initial proposed gate design was found to be imbalanced; lanes were added at key stages based on model results to ensure sufficient capacity at each stage
- Recommend increasing automatic data transfer with appointments to minimize verbal exchange of information and reduce remote clerk interaction time
- Eventually, empty inspections at the exit stage will likely need to be phased out, but this is likely many years out
- Separation of road and rail traffic with an overpass will help reduce truck queuing on busy downtown Vancouver roadways, especially at future volumes

Terminal Simulation Goals

- Analyze how the terminal performs under peak loadings
- Determine if a fixed level of container yard equipment (RTGs and Top-Picks) will be able to serve quay cranes and IYRMGS sufficiently well to achieve target productivities
- Determine if street trucks can be served sufficiently quickly by CY equipment during busy rail and vessel days

CY Capacity (RTGs especially) is the Primary Limiting Factor on Productivity

General Marine Terminal Simulation (GMTS)

Inputs

- Terminal layout
 - Storage blocks
 - Tractor travel direction
- Peak shift load
 - Vessel
 - Gate
 - Rail
- Equipment performance specs (hoist speed, pick/set times etc.)
- Amount of equipment in use

Outputs

- Net equipment productivity
 - Dock cranes
 - Yard cranes
 - IY cranes
- Work cycle detail (lifting, moving, idle etc.)
- Street truck service time (not including gate process)
- Street truck population

Example GMTS 3D Animation View

Initial Terminal Performance Analysis Procedure

- First, consider the worst-case scenario peak shift loading:
 - Two vessels at berth with all dock cranes in operation
 - All IY RMGs in operation
 - A busy weekday gate day within the busy season
- What happens?
- Unsurprisingly, quay crane and IYRMG target productivities were not met, and street truck turn times were above DPWV's acceptable standard
- However, results were not "catastrophically" bad; the terminal was able to operate under these conditions, but not at desired levels

Alternative Cases: Peak Loading Combinations

- The busiest potential shift (MaxMax below) is a rare occurrence far above a mean day shift
- Different aspects of the terminal may peak in various combinations, either naturally or through strategically shifting gate or rail activity, as delineated below:

Combination	1	2	3	4	5	6	7	8
	Max Vessel	Max Rail	Max Gate	No Gate	No Vessel	No Rail	Mean Peak	Max Max
Vessel	7	5	5	7	-	7	4	7
Rail	3	5	3	5	5	-	3	5
Gate (% of Max Peak)	75%	75%	100%	-	100%	100%	90%	100%
% of Mean Shift CY Moves	220%	210%	200%	180%	150%	200%	180%	260%

Comparative Results

Other Strategies to Address Peak Conditions

- Extended gate hours
- More uniform gate appointments
- Advanced rehandling for gate imports
- Optimized container yard load balance (i.e. all RTGs are top-picks are equally stressed, rather than concentrating work)
- If necessary, add container yard equipment

Impact of Alternative Tactics vs. Mean Peak Case

What about an average, non-peak day? Productivity corresponds strongly to total CY moves

Conclusions

- Overall, the terminal will be able to perform well during most peak situations
- Rare, unavoidable extremely busy days may pose a challenge, but DPWV can work around them, and actively prevent them from occurring
- Off-terminal infrastructure needs also have to be considered in advance
- Robust IT systems are critical to enable congestion mitigation techniques to be enacted (e.g. appointment systems, TOS optimized for advanced rehandling)

Thank You

Contact Information:

Krystle McBride AECOM 1333 Broadway St., Suite 800 Oakland CA, 94612 Phone: 510-874-3076 Email: <u>krystle.mcbride@aecom.com</u> Web: www.aecom.com

