

MEASUREMENT & CALIBRATION TECHNOLOGIES

Weathering of Polypropylene New Technologies and Test Standards

Weathering of Polypropylene New Technologies and Test Standards

Dr. Artur Schönlein

Atlas MTT GmbH, 63589 Linsengericht

artur.schoenlein@ametek.com

 Flexible intermediate bulk containers (FIBCs) for nondangerous goods

- Paper from Allison Bouchat, BulkDistrubutor, FIBCs&Bagging March/April 2015
- "Testing the UV resistance of FIBCs"
- "Big bags are most commonly made of woven polypropylene, a polymer that, like other materials, is <u>damaged by exposure to</u> <u>sunlight</u> over time. This degradation process can ultimately <u>cause</u> <u>the fabric to tear</u> when exposed to strain and put both content and personnel at risk."
- "Fortunately, through the use of <u>UV stabilisers</u> in the polymer and the proper handling of FIBCs, the risk of <u>photochemical damage</u> <u>can be reduced to a minimum</u>."
- "It is, however, vital that FIBCs are covered or stored away from the sunlight during usage, transport and storage."

- Effect of photo oxidative ageing on (thermoplastics) polymers
- XX main criteria, X secondary criteria

		\frown														
criteria		PE, PP	Ρ	SMA	P	M	F	VC	F	POM	P	A	P	ΞT	P	C
yellowing		Х		XX	X	X		XX			>	×			Х	X
surface cracks chalking		Х		Х						XX						
tensile strength elongation at brea	ç	XX			>	(х			Х	X	Х	X		
impact strength		Х		Х	X	X		Х		XX	>	X)	X	2	X
bending strength				Х						Х)	X		

Quelle: Krebs/Avondet/Leu: Langzeitverhalten von Thermoplasten Hanser-Verlag, München (1999)

- ISO 21898: Packaging Flexible intermediate bulk containers (FIBCs) for non-dangerous goods
- Annex A (normative) UV resistance test
 - A.3 Apparatus
 - The apparatus should be in accordance with ASTM G154-98, using a <u>UV-B lamp</u>.
 - A.4 Procedure
 - Expose a test specimen to a fluorescent UV lamp for at least 200 h, using a test cycle of 8 h at 60 °C with UV radiation, alternating with 4 h at 50 °C with condensation.
 - After exposure is complete, test the specimen for <u>breaking force and</u> <u>elongation at break</u> in accordance with ISO 13934-1 using the conditioning requirements given in 5.2.2. Compare the values with results performed on simultaneously cut test specimens that have been stored under dark and cool conditions.

.

- What are the environmental stress factors for FIBCs?
- Made of woven PP
- Colors white and red

Factors of weathering

Spectral irradiance distribution

- $f_{SPEKTRUM} = E_{e\lambda}(\lambda)$

Irradiance (W/m²)

 $- E_{UV} = E_e = \int_{300 \ nm}^{400 \ nm} E_{e\lambda} \cdot d\lambda$

- Sample temperature
- Black standard temperature (°C)
 - Measure for maximum temperature of samples
- Ambient air temperature (°C)
 - Measure for minimum temperature of samples
- Relative Humidity (%)
- Water (rain, dew)

Radiation effect: solar radiation

Spectral irradiance distribution of global solar radiation (AM 1):

Radiation initiated ageing processes

- Photolysis
 - ageing processes, without participation of O_2
 - example PVC: HCI separation, leads to yellowing and later to browning
- Photo-oxidation
 - ageing processes, with participation of O_2
 - example polyolefin: emerging ketenes, carbon acids, vinyl groups, chain scissions, CO₂, H₂O
 - example polypropylene: oxidation can continue after a radical chain reaction auto-oxidation
- Photo-catalysis
 - example: radiation absorption by pigments with semiconductor properties

Radiation effect: spectral sensitivity

Radiation effect: spectral sensitivity

 Action spectra (spectral sensitivity) of an un-stabilized polyethylene foil and a 270µm thick un-stabilized polypropylene foil

A. Geburtig et al. BAM, Berlin, VFI

Radiation effect: spectral sensitivities

Examples of spectral sensitivities (Norma D. Searle, SunSpots Volume 24 Issue 48, 1994)

ACTIVATION SPECTRA*							
Polymer	Mils	Solar region causing maximum degradation	Type of degradation				
ABS	100 10	350-380nm >380nm >380nm 370-385nm	loss in tensile strength loss in tensile strength (longer exp.) bleaching (decrease in yellowness) increase in UV absorption (long exp.)				
Polyacrylate	60	385nm	increase in yellowness				
Polyamides (aromatic)	film/fibre	360-370nm*, 415nm*	increase in yellowness				
Polypropylene	15 60	340-380nm 360-380nm	carbonyl formation loss in tensile strength (long exp.)				
Polyurethanes (aromatic)	film	350-415nm*	increase in yellowness				
PVC copolymer with vinyl acetate	film	365nm	increase in yellowness and increase in UV absorption				
*Range of activation spectrum varies with formulation							

*Norma D. Searle, Handbook of Polymer Degradation

 Schematic drawing of a coated isolated stainless steel plate which is exposed to the natural weather factors sun radiation, ambient air temperature, and wind

- Surface temperatures and ambient air temperature in central Arizona mostly clear days (data every minute)
- colored surface temperature sensors at on orientation of 45° to the horizontal

- $\Delta T = T_{SURFACE} T_{AMBIENT} = COLOR-AMB (Set A)$
- v_{WIND} ca. 3.5 m/s
- Xenotest Beta (global solar radiation filter acc. CIE85, Tab.4)

Xenon

- technology reproduce the same temperature effect as solar radiation
 - amount and temperature separation

Fluorescent UV

- will not effect specimen temperature in the way as solar radiation
 - no temperature separation
 - a temperature increase by thermal radiation is possible

Temperature effect on photochemical reaction

- Effects that depend on temperature
 - moisture and oxygen diffusion
 - stabilizer diffusion
 - reaction rate of photochemical reaction
 - reaction rate of secondary reactions
 - *material properties (e.g. glass transition, melting point ...)*
 - mechanical effect of temperature and temperature cycles...
- If similar samples are tested and temperature separating can be neglected external temperature control in Fluorescent UV instruments might be sufficient
- Differences in the degradation behavior of differently colored species, as observed in nature, can only be reproduced with Xenon-arc radiation

Water – effect (mechanical, chemical)

- Water as
 - Humidity; rain; dew
- Effects

- Change of T_G (mobility of O_2 and H_2O)
- Extraction of additives (UV-Absorber, Antioxidants)
- Mechanical stress by
 - Abrasion, blistering by impinge
 - Swelling shrinking
- chemical reaction of the material with water
 - Hydrolysis (PA, PU)
 - Generation of OH und HO₂ radicals by irradiation, which react with the organic material

Technical principles: instruments

www.atlas-mts.com

Simulation of global solar radiation

Fluorescent 313 nm (UVB) is not a simulation of global solar radiation

Simulation of global solar radiation

 Fluorescent 313 nm (UVB) is not a simulation of global solar radiation

Activation spectra of polypropylene

- Descriptive presentation of ranges of spectral sensitivities of polypropylene
 - yellowness (about 310 nm)
 - CO formation (about 340 nm)
 - Loss in tensile strength (about 380nm)
- Global solar radiation
- Filtered xenon radiation
- Fluorescent radiation

Norma Searl Handbook of Polymers

Moisture effects: some comments

- The effect of moisture (water) can be simulated in both instrument technologies
 - Since the two instrument technologies have spray function or allow condensation
- Some instrument manufacturer argue that condensing humidity is more aggressive and more realistic then water spray
 - Surface temperature effect can be different during condensation and spray
 - To the surface migrated reaction products are not removed by condensation
- But there is no relevant publication available which confirm both effects
- Control of humidity can be important (only xenon technology)
- Instruments with fluorescent UV arc lamps do not control humidity

- Geo textiles PP with different stabilizer contents:
 - Laboratory weathering test in accordance to EN 12224 (Geotextiles and geotextiles-related products - Determination of the resistance to weathering), fluorescent method
 - *Fluorescent UV* device UV-A 340 arc lamp:
 - UV2000 irradiance E_{UV}: 38 bis 42 W/m² (0,83 W/m2 @ 340 nm), BPT: 50°C cycle: 5 h, 1 h spray @ ca. 30 °C (no UV)
 - Xenon device
 - Suntest XXL+ irradiance $E_{UV}\!\!:$ 40 \pm 2 W/m², CHT: 20 °C, RH: 20 %, BST: 50 °C

cycle: 5 h irradiation, 1 h spray

- Natural weathering
 - Würzburg (Germany),
 - Sanary-sur-Mer (France),
 - Hoek van Holland (The Netherlands)

Marcus Heindl et all, "STUDY OF ARTIFICIAL AND OUTDOOR WEATHERING OF STABILISED POLYPROPYLENE [†] GEOTEXTILES",EuroGeo4, 2008

www.atlas-mts.com

- Geo-textiles PP with different HALS stabilizer contents: 0.75%, 1.5%, 4.5%
- Mould proving 45 MJ/m² (total UV)
- Evaluation: tensile strength, remaining stabilizer content

Elongation at break after exposure in a Suntest XXL+

Marcus Heindl et all, "STUDY OF ARTIFICIAL AND OUTDOOR WEATHERING OF STABILISED POLYPROPYLENE GEOTEXTILES", EuroGeo4, 2008

www.atlas-mts.com

Different locations and instruments at 0.75 % stabilizer content

Marcus Heindl et all, "STUDY OF ARTIFICIAL AND OUTDOOR WEATHERING OF STABILISED POLYPROPYLENE GEOTEXTILES", EuroGeo4, 2008

www.atlas-mts.com

Different locations and instruments with 1.5 % stabilizer contents

Marcus Heindl et all, "STUDY OF ARTIFICIAL AND OUTDOOR WEATHERING OF STABILISED POLYPROPYLENE GEOTEXTILES", EuroGeo4, 2008

www.atlas-mts.com

different locations and instruments at 4.5 % stabilizer content

Marcus Heindl et all, "STUDY OF ARTIFICIAL AND OUTDOOR WEATHERING OF STABILISED POLYPROPYLENE GEOTEXTILES", EuroGeo4, 2008

www.atlas-mts.com

Stabilizer consumption is a function of radiant exposure

Marcus Heindl et all, "STUDY OF ARTIFICIAL AND OUTDOOR WEATHERING OF STABILISED POLYPROPYLENE GEOTEXTILES", EuroGeo4, 2008

Stabilizer content after 180 MJ/m² exposure

Marcus Heindl et all, "STUDY OF ARTIFICIAL AND OUTDOOR WEATHERING OF STABILISED POLYPROPYLENE GEOTEXTILES", EuroGeo4, 2008

www.atlas-mts.com

Summary

- A weathering test for FIBCs is described in ISO 21898 with a fluorescent UVB radiation source.
 - The UVB radiation source seems not to be an ideal solution because of the wavelength below 290 nm which does not exist in global solar radiation.
- Regarding the spectral sensitivity of PP the use of a fluorescent
 - UVA radiation source can be appropriate
 - better a xenon laboratory radiation source
- The temperature separation observed during natural exposure can be reproduced in a
 - xenon weathering device
 - but not in a fluorescent UV device
- Modern instrument shall generate, measure and, control UV irradiance, the temperature level and, relative humidity.